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Abstract

Review Article

Introduction

In 1773, Lavoisier and Recherches de were the first to 
recognize that earth’s atmosphere was composed of a 
vital substance  (“air”) that supported life.[1] As the key 
life‑supporting element, oxygen was independently discovered 
by Priestly, in 1775,[2] and Scheele, in 1777.[3] Within a few 
years of these seminal findings, oxygen toxic side effects that 
did not support life were also discovered. This revelation 
was made by Lavoisier in 1785 by a simple experiment in 
which guinea pigs exposed to oxygen in a container showed 
congestion of the right heart as well as lungs and died before 
the oxygen was fully utilized.[4] More than two centuries 
ago, the good and bad facets of oxygen that are played out 
by its unique molecular structure were already known.[5] The 
structural configuration of oxygen molecule is diradical that 
can accept four electrons and the resultant one-step tetravalent 
reduction results in the formation of water, with concurrent 
production of ATP. Ironically, if these four electrons are 
added one at a time, partially reduced forms of oxygen or 
free radicals are produced.[6‑8] Free radicals can be defined as 
reactive chemical species having a single unpaired electron 

in an outer orbit.[9] This unstable configuration creates energy 
that can initiate autocatalytic reactions so that molecules to 
which they react are themselves converted into free radicals.[10] 
Although reactive oxygen species (ROS) are more common 
in biological systems,[10] free radicals also include reactive 
nitrogen species.[11] ROS are produced both endogenously and 
exogenously.[12] The endogenous sources of ROS are the mainly 
by‑products formed in the cells of aerobic organisms within 
mitochondria.[13] Additional endogenous sources are certain 
enzymes, neutrophils, eosinophils, and macrophages.[10,14,15] 
In addition, microsomes and peroxisomes are the sources 
of ROS, and microsomes are responsible for the majority of 
ROS produced in vivo at hyperoxia sites.[16,17] ROS can also be 
produced by a host of exogenous sources, such as xenobiotics, 
chlorinated compounds, environmental agents, metals 
(redox and nonredox), ions, and radiation.[10,16,18] In general, 
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ROS commonly include superoxide anion  (O2
−), hydrogen 

peroxide  (H2O2), and hydroxyl radicals  (OH·).[19,20] It has 
been established that ROS can be both harmful and beneficial 
in biological systems depending on the environment.[21,22] 
At normal physiological levels, in phagocytic cells, ROS 
play a key role in cell‑mediated immunity and microbicidal 
activity.[23,24]

In nonphagocytic cells, they are involved in a number of cellular 
signaling systems as well as in the induction or inhibition of cell 
proliferation.[25‑27] The rate of ROS production in nonphagocytic 
cells is only about one‑third of that of phagocytic cells.[28‑31] In 
contrast, at very high concentrations, ROS are often associated 
with the principle of oxidative stress.[32] The term oxidative 
stress is used to describe the condition of oxidative damage to 
a wide range of cellular structures, as a result of an imbalance 
between free radical production and antioxidant defenses.[33] 
Short‑term oxidative stress may occur in tissues injured by 
trauma, infection, heat injury, hyperoxia, toxins, and excessive 
exercise.[34,35] Moreover, harmful effects are balanced by the 
action of antioxidants, some of which are enzymes present in 
the body.[36] However, long‑term oxidative stress despite the 
presence of the cell’s antioxidant defense system, ROS have 
been implicated in the induction and complications of various 
cardiovascular diseases, such as atherosclerosis.[37,38]

The Role of Free Radicals in Redox Signaling

At normal physiological levels, free radicals are ideally 
suited to be signaling molecules because they are small and 
can diffuse short distances; there are several mechanisms for 
their production, and there are also numerous mechanisms 
for their rapid removal.[39] Furthermore, several enzymes 
which are involved in cell signaling mechanisms, such as 
guanylyl cyclase,[40] phospholipase C,[41,42] phospholipase 
A2,

[43‑46] and phospholipase D,[47] are also potential targets of 
ROS. Ion channels too may be targets,[48,49] including calcium 
channels.[50] There are various examples of growth factors, 
cytokines, or other ligands that trigger ROS production in 
nonphagocytic cells through their corresponding membrane 
receptors. Such ROS production can mediate a positive 
feedback effect on signal transduction since intracellular 
signaling is often enhanced either by ROS or by a pro‑oxidative 
shift of the intracellular thiol/disulfide redox state.[51] Signaling 
mechanisms that respond to changes in the thiol/disulfide redox 
state include AP‑1 transcription factor in human T‑cells, nuclear 
factor κB (NF‑κB) transcription factor in human T‑cells,[52] 
control of K+ channel activity in the carotid body,[53] human 
insulin receptor kinase activity,[54] Src family kinases, JNK 
and p38 mitogen‑activated protein kinase (MAPK) signaling 
pathways,[55] and signaling in replicative senescence.[56] Protein 
phosphorylation also plays a critical role in regulating many 
cellular metabolic processes in eukaryotes.

In particular, protein phosphorylation governs multiple 
signal transduction pathways.[57] Being a reversible and 
dynamic process, protein phosphorylation requires not only 

a PK but also a protein phosphatase  (PP). Cellular target 
proteins are phosphorylated at specific cellular transduction 
sites (usually at serine/threonine or tyrosine residues) by one 
or more PKs, and the phosphates are removed by specific 
PPs. The extent of phosphorylation at a particular site can 
be regulated by changing the activity of either the PK or 
PP or both.[58] Among the extracellular signals, growth 
factor‑dependent protein tyrosine kinases (PTKs) and protein 
tyrosine phosphatases  (PTPs) are of primary importance to 
mitogenesis, cell adhesion, cell differentiation, oncogenic 
transformation, and apoptosis.[41,54,59] There has been a growing 
body of evidence, suggesting that ROS modulate PTK and 
PTP activities directly.[59,60] ROS specifically H2O2 can be 
synthesized endogenously in certain cell types as a response 
to activation by specific cytokines or growth factors. This 
endogenous H2O2 then acts as a second messenger to stimulate 
PK cascades coupled to inflammatory gene expression or in 
control of the cell cycle.[61] The earliest convincing studies that 
implicated H2O2 as an endogenous messenger were performed 
by Sundaresan et  al.[62] using, as a model system, vascular 
smooth muscle cells stimulated with platelet‑derived growth 
factor  (PDGF). PDGF receptor binding caused peroxide 
formation which could be inhibited by intracellular expression 
of catalase.[57] Catalase expression inhibited PDGF signal 
transduction by suppressing protein tyrosine phosphorylation. 
Antioxidants, particularly thiol‑reducing agents such as 
N‑acetyl‑cysteine, could mimic the inhibitory effects of 
catalase and prevent redox activation of ligand‑coupled PK 
cascades. Exposure to high concentrations of H2O2 or strong 
pro‑oxidative changes in the intracellular thiol/disulfide redox 
state will generally lead to increased tyrosine phosphorylation 
in numerous proteins.[63‑66] This effect is to some extent, albeit 
not exclusively, the consequence of the oxidative inhibition 
of PTPs. Massive inhibition associated with increased net 
phosphorylation of receptor tyrosine kinases is induced by 
various types of strong oxidative stress, including high doses 
of ROS, ultraviolet irradiation, or alkylating agents.[67‑74] PTPs 
counteract the effect of PTKs and reset membrane receptors 
after ligand‑induced autophosphorylation.[57]

The epidermal growth factor  (EGF) receptor, for example, 
is normally dephosphorylated at all tyrosine residues 
in  <1  min after ligand‑induced autophosphorylation,[75] but 
this dephosphorylation is retarded by high concentrations of 
H2O2 on the order of 1 mM or other inducers of oxidative 
stress. A PTP was also shown to regulate the activation of the 
EGF receptor.[76] Reversible protein phosphorylation is the 
key biochemical event in most cell signaling pathways, and 
signal transduction involving ROS is no exception. Several 
reports have shown that MAPKs are activated by H2O2 in both 
animals[77‑79] and plants,[80‑82] which could lead to the modulation 
of gene expression. Whether H2O2 has a direct effect on MAPKs 
or activating upstream effectors needs to be established. On the 
other hand, H2O2 has also been shown to inhibit phosphatases, 
probably by the direct oxidation of cysteine in the active site 
of these enzymes.[79] The Janus kinase‑signal transducers and 
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activators of transcription pathways in animal cells are also 
activated by H2O2, suggesting that H2O2 may transduce its 
message into the nucleus of cells by at least two transduction 
pathways.[83] It is now becoming apparent that the redox status 
inside a cell is crucial to the correct functioning of many enzymes 
and can be used to alter enzyme activity; thus, alteration of the 
redox status could act as a signaling mechanism.[84] One of the 
most important redox‑sensitive molecules in this respect must 
be glutathione (GSH), which forms the GSH–GSSG couple. 
Certainly, H2O2 will have the effect of lowering the GSH content 
of cells and altering the redox status, and hence, propagation 
of a signal induced by H2O2 through this route is likely. It 
is suggested that enzymes such as ribonucleotide reductase 
and thioredoxin reductase, as well as transcription factors, 
might be among the targets for altered redox status. Not only 
does GSH act as an antioxidant, but it also can modulate the 
activity of a variety of different proteins via S‑glutathionylation 
of cysteine sulfhydryl groups. The thioredoxin system also 
makes a significant contribution to the redox environment 
by reducing inter‑ and intra‑chain protein disulfide bonds as 
well as by maintaining the activity of important antioxidant 
enzymes such as peroxiredoxins and methionine sulfoxide 
reductases.[52,85,86] Baeuerle et al. and Rogler et al.[87,88] showed 
that certain transcription factors of the NF‑κB/rel family can 
be activated not only by receptor‑targeted ligands but also by 
direct application of oxidizing agents  (particularly H2O2) or 
ionizing radiation. Subsequently, several other PK cascades 
and transcription factors have been discovered to possess 
redox‑sensitive elements.

The common paradigm in all redox‑sensitive signal 
transduction pathways is the presence of intermediate 
PKs which are activated by phosphorylation of specific 
regulatory domains. For example, NF‑κB is activated upon 
phosphorylation of an inhibitory subunit (IκB).[71,87]

Strategies to Reduce Oxidative Stress in 
Cardiovascular Diseases

Pharmacological inhibition of nicotinamide adenine 
dinucleotide phosphate oxidase
Nicotinamide adenine dinucleotide phosphate  (NADPH) 
oxidase has been reported to be the major source of O2

−  in 
the vascular tissue.[89] However, there is a lack of effective 
inhibitors targeting the NADPH oxidase system. Although 
diphenyleneiodonium is frequently used, it can inhibit a 
broad range of flavin‑containing enzymes. Recently, several 
pharmacological and molecular approaches to directly target 
the NADPH oxidase enzyme have been proposed. Apocynin, 
a methoxy‑substituted catechol, has been used by Peruvian 
Indians as an anti‑inflammatory agent. It acts by blocking the 
assembly of p47 phox into the membrane complex.[90] Another 
study suggests that apocynin decreases O2

− production in rat 
and human vascular rings, increases nitric oxide production 
in cultured human endothelial cells, and improves endothelial 
function ex vivo in human arteries and veins, as well as 

arteries from WKY and SHRSP rats.[91] Interestingly, effects 
of apocynin in young WKY rats (low oxidative stress) were 
minimal when compared with effects in age‑matched SHRSP 
rats  (high oxidative stress). It has also been reported that 
administration in  vivo of apocynin to deoxycorticosterone 
acetate‑salt hypertensive rats decreased both vascular 
O2

−  production and blood pressure.[92] Although apocynin 
appears to be an effective NADPH oxidase inhibitor in the 
vascular tissue from both rats and humans, it needs to be 
present in relatively high concentrations to be effective. Rey 
et al.[93] have also considered disruption of the active NADPH 
oxidase complex as a means of reducing oxidative stress. 
They used a chimeric peptide (gp91ds‑tat) designed to cross 
cell membranes and then inhibit p47 phox association with 
gp91 phox. Infusion of this peptide into mice significantly 
inhibited Ang‑II‑induced rises in blood pressure and vascular 
O2

− production.

Another recently developed compound, S17834, a 
benzo‑(γ)‑pyran‑4‑one, has been shown to inhibit NADPH 
oxidase activity and O2

− production and attenuate atherosclerotic 
lesions in apolipoprotein‑E‑deficient mice.[94] However, 
its exact mechanism of action remains to be elucidated. 
Several studies have suggested that 3‑hydroxy‑3‑methyl 
glutaryl‑CoA reductase inhibitors  (statins) have inhibitory 
actions on O2

− production from NADPH oxidase‑independent 
of low‑density lipoprotein  (LDL) reduction.[95,96] It has 
been shown recently that both O2

− and H2O2 production by 
vascular tissue and leukocytes are inhibited by simvastatin in 
Ang‑II‑infused rats.[97] Prevention of O2

− production by statins 
may be linked to prenylation‑dependent Rac translocation and 
NADPH oxidase inhibition.[98]

Pharmacological inhibition of the renin‑angiotensin 
system
Ang II has been shown to be a potent stimulation of NADPH 
oxidase activity in the vascular smooth muscle, fibroblasts, 
endothelial cells, and cardiomyocytes. Infusions of Ang II have 
been shown to cause upregulation of the subunits of NADPH 
oxidase and increase O2

− levels in animal studies.[99‑101] There 
is accumulating evidence that Ang II is also an important 
stimulant of NADPH oxidase activity and O2

−  production 
in human.[102‑104] In addition to its interactions with NADPH 
oxidase, Ang II has been shown to induce LOX‑1 expression, 
the human endothelial receptor for oxidized LDL.[105] Thus, it 
is not surprising that angiotensin‑converting enzyme (ACE) 
inhibition and Ang‑II‑receptor antagonisms may play a key role 
in reducing levels of oxidative stress. It has been commonly 
postulated since the Heart Outcomes Protection Study[106] 
that some of the beneficial effects of ACE inhibitors are 
independent of their effect on blood pressure. ACE inhibition 
as an antioxidant strategy has been suggested as part of the 
explanation for this. Consistent with this hypothesis, ACE 
inhibition has been shown to improve endothelial function 
in patients with coronary artery disease.[107] In addition, 
AT1‑receptor antagonists have been shown to be antioxidant 
and vasoprotective in patients with coronary artery disease, 
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again downregulating vascular NADPH oxidase expression.[108] 
Treatment with either an ACE inhibitor or an AT1‑receptor 
antagonist resulted in lower levels of vascular O2

−.[109] It has 
been shown that calcium channel blockers, beta‑blockers, and 
alpha‑receptor blockers have antioxidant effects in conditions 
in vitro.

However, although a recent study by Baykal et al.[110] demonstrated 
a reduction in malondialdehyde and an increase in erythrocyte 
levels of superoxide dismutase (SOD) in hypertensives taking 
the ACE inhibitor ramipril or the AT1‑receptor blocker valsartan, 
no improvement in the antioxidant status was observed 
in patients taking amlodipine  (calcium channel blocker), 
metoprolol (beta‑blocker), or doxazosin (alpha‑blocker).

Antioxidant dietary supplements
A wealth of data from epidemiological studies suggest that 
a greater intake of antioxidant vitamins, such as Vitamin E, 
Vitamin C, and beta‑carotene, are associated with a reduced 
risk of cardiovascular disease.[111] Numerous animal studies 
support this hypothesis[112‑114] as do a number of relatively 
short‑term functional studies in human although many of 
these studies employed supraphysiological concentrations 
of vitamins. Vitamin E has been shown to decrease LDL 
oxidation[115,116] and to improve endothelial function.[117,118] 
Similarly, Vitamin C administration has been shown to 
improve endothelium‑dependent vasodilation.[119,120] The exact 
molecular mechanisms underlying these beneficial effects are 
not fully understood, but some recent studies are beginning to 
elucidate potential pathways. Ulker et al.[121] reported that 24 h 
and exposure to Vitamin C (10–100 µM) or Vitamin E (100 µM) 
enhanced nitric oxide synthase (NOS) activity and attenuated 
NADPH oxidase activity in the rat aorta. It has been suggested 
that the Vitamin C‑mediated increase in NOS activity could be 
related to alterations in tetrahydrobiopterin (BH4) levels.[122,123] 
Consistent with this hypothesis, long‑term treatment of 
apolipoprotein‑E‑deficient mice with Vitamin C resulted in a 
decrease in levels of 7,8‑dihydrobiopterin (BH2), an oxidized 
form of BH4, and an improvement in the ratio of BH4/BH2.[124] 
Despite strong evidence demonstrating antioxidant effects of 
Vitamins C and E in animals, and acutely in human, prospective 
randomized clinical trials have produced contrasting results. 
Of the larger trials, Gruppo Italiano per lo Studio della 
Sopravvivenza nell’Infarto miocardico,[125] the Heart Outcomes 
Prevention Evaluation,[106] the Heart Protection Study,[126] and 
the Primary Prevention Project[127] failed to show any benefit. In 
contrast, the Cambridge Heart Antioxidant Study[128] and most 
recently the Antioxidant Supplementation in Atherosclerosis 
Prevention Study[129] report positive results. Data from these 
and some smaller trials have been elegantly summarized in an 
editorial by Jialal and Devaraj.[115] Numerous explanations have 
been proposed for the lack of observed benefit in the majority 
of randomized trials.

They include oxidant stress status of the participants and 
dose and combination of vitamins administered. Vitamins C 
and E reside in different cellular compartments, supporting 

the concept of combined therapy. Moreover, Vitamin E may 
be oxidized to form the tocopherol radical. This radical can 
enhance lipid peroxidation and needs to be converted back 
into the reduced form by other antioxidants.[130] Although 
the role of the antioxidant vitamins remains controversial, 
it is widely accepted that a “healthy diet” has an important 
role in the prevention of cardiovascular disease. Two recent 
studies emphasize this. In one randomized placebo‑controlled 
trial in which participants were encouraged to increase fruit 
and vegetable consumption, both systolic and diastolic 
blood pressure was significantly lower in the intervention 
group.[131] In the second study, 6  weeks of “Mediterranean 
diet,” but not oral Vitamin C, was shown to improve vascular 
function.[132] It is probable that antioxidant vitamins in the 
“healthy diet” act in synergy with other antioxidants, such as 
flavonoids and other phenolic compounds, to provide a better 
antioxidant environment than that achieved with vitamin 
supplementation alone. Recently, the beneficial effects of 
polyphenols, particularly from red wine, have received much 
attention.[133] Several studies have demonstrated antioxidant 
properties of red wine and purple grape juice.[134,135] It has also 
been suggested that red wine polyphenols could act to improve 
endothelial function by increasing endothelial NOS (eNOS) 
expression.[136] However, it must be remembered that other 
beverages, including beer and green tea, have been reported 
to have oxidative potential as having a range of foodstuffs 
ranging from olive oil to nuts.[137] Such data support the 
recommendation of a diet rich in fruits, vegetables, whole 
grain, oils, and nuts for cardiovascular protection.

L‑Arginine supplements
Numerous studies in both experimental animals and human 
have shown that acute and chronic administration of L‑arginine 
improves vascular function in hypercholesterolemia and other 
forms of cardiovascular disease.[138‑140] The availability of 
L‑arginine for reaction with eNOS should not be rate limiting 
as intracellular levels of L‑arginine are in the millimolar 
range, whereas the Km for the substrate is in the micromolar 
range. This apparent discrepancy is frequently referred to 
as the “L‑arginine paradox.” Explanations for this paradox 
include decreased O2

−  production, decreased transport of 
arginine into endothelial cells, increased levels of asymmetric 
dimethylarginine, and increased insulin release.[141]

Most recently, it has been suggested that translational control of 
NOS expression by arginine can explain the arginine paradox, 
at least for inducible NOS (iNOS).[142]

Thiol‑containing compounds supplements
Over the years, a number of thiol‑containing compounds 
have been used experimentally to inhibit LDL oxidation and 
reduce oxidative stress. Recent studies would support the 
continued investigation of such compounds. In glucose‑fed 
rats, α‑lipoic acid attenuated hypertension, insulin resistance, 
and oxidative stress,[143] and in another study, it was shown to 
lower blood pressure in spontaneously hypertensive rats.[144] In 
human, the classical sulfhydryl compound N‑acetyl‑cysteine 
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reduced cardiovascular events in patients with end‑stage renal 
failure.[145]

Estrogen and hormone replacement therapy
Premenopausal women are at a lower risk of atherosclerosis 
and have a lower incidence of coronary heart disease and 
myocardial infarction than postmenopausal women or 
age‑matched men.[146,147] Acute estrogen administration 
has been reported to improve vasoreactivity in healthy 
postmenopausal women.[148,149] Epidemiological studies 
suggested that hormone replacement therapy reduced morbidity 
and mortality associated with cardiovascular disease.[146] 
Innumerable animal studies have also shown favorable effects 
of estrogen on the cardiovascular system.[150,151] However, 
controversy exists over the mechanisms underlying the 
beneficial effects of estrogen. Some groups have cited 
decreased O2

− production as a primary cause[151,152] and others 
increased expression of NOS by genomic or nongenomic 
pathways.[150,153‑155] In addition, estrogens may activate the 
gene encoding cyclooxygenase and decrease production of 
the potent vasoconstrictor endothelin.[156,157] Surprisingly, 
against this background, data from recently published 
randomized prospective‑controlled clinical trials failed to 
show cardiovascular benefit from hormone replacement 
therapy  (Heart and Estrogen Progesterone Replacement 
Study,[158] Estrogen Replacement and Atherosclerosis,[159] 
and the Women’s Health Initiative Randomized Controlled 
Trial[160]). Part of this apparent contradiction may relate to the 
cohorts studied. Most animal studies and most of the early 
observational studies used healthy cohorts which may not be 
representative of the general population. Women with existing 
cardiovascular disease may not show the same beneficial 
effects of estrogen on endothelial function as demonstrated 
in healthy cohorts.

In such women, the adverse effects of estrogen, such as the 
increase in triacylglycerol levels and C‑reactive protein, may 
out weight the benefits.[158]

Pharmacological superoxide dismutase mimetics 
supplements
Endogenous O2

− is dismutated to H2O2 by a family of SODs. 
In general, studies both in vivo and in vitro aimed at reducing 
oxidative stress by increasing levels of Cu/Zn SOD have 
proved disappointing. This may be because Cu/Zn SOD does 
not gain access to the appropriate cellular compartments. 
However, a number of SOD mimetics are available that cross 
the membrane and have proved more successful in decreasing 
oxidative stress and improving endothelial function.[161,162]

Pharmacological inhibition of xanthine oxidase
Xanthine oxidase has been proposed to be an important source 
of O2

−  in human.[102] The enzyme exists in two isoforms, 
xanthine oxidase and xanthine dehydrogenase. Activity of 
the former may be increased in ischemia‑reperfusion injury 
and inflammation. Cardillo et al.[163] reported that the xanthine 
oxidase inhibitor oxypurinol improved endothelial function in 

hypercholesterolemic, but not hypertensive, subjects. More 
recently, another xanthine oxidase inhibitor allopurinol has 
been shown to improve endothelial function in Type II diabetes, 
congenital heart failure, and cigarette smokers.[164‑166] However, 
it must be noted that the patient numbers in all these studies 
were low (11 patients or less).

Conclusion

Free radicals can be either harmful or helpful to the body. The 
concentration and location of ROS are the main determinants 
of their effect. Many data support the notion that ROS released 
from NADPH oxidase, myeloperoxidase, xanthine oxidase, 
lipoxygenase, and NOS. At normal physiological levels, free 
radicals ideally suited to be signaling molecules. Several 
enzymes which are involved in cell signaling mechanisms, 
ion channels, human insulin receptor kinase activity, Src 
family kinases, and JNK and p38 MAPK signaling pathways 
are also potential targets of ROS. There has been a growing 
body of evidence suggesting that ROS modulate PTK and PTP 
activities directly.

ROS production can mediate a positive feedback effect on 
signal transduction since intracellular signaling is often 
enhanced by ROS or by a pro‑oxidative shift of the intracellular 
thiol/disulfide redox state. When an overload of free radicals 
cannot gradually be destroyed, their accumulation in the body 
generates a phenomenon called oxidative stress. This process 
plays a major part in the development of various cardiovascular 
diseases. A  wealth of data from epidemiological studies 
suggests that greater intakes of antioxidant are associated with 
a reduced risk of cardiovascular disease. In the future, both 
nonpharmacological and pharmacological therapeutic strategy 
to increase the antioxidant capacity of cells may be used to 
fortify the long‑term effective treatment. Further research 
is needed before this supplementation could be officially 
recommended as adjuvant therapy.
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